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Fig. 7. Characterization of nanoparticles. (A) Structure of DADLE-LipoMSN-DADLE. (B) Physical properties of nanoparticles. n = 4 experiments. (C) Transmission electron
micrographs of DADLE-LipoMSN and DADLE-LipoMSN-DADLE. Representative images, n = 3 independent experiments. (D and E) Time course of in vitro release of
DADLE-Alexa647 from MSN-DADLE-Alexa647 at graded pH (D) and glutathione concentrations (E). n = 3 independent experiments. *P < 0.05, **P < 0.01, t test
with Holm-Sidak correction. (F and G) Uptake of DADLE-LipoMSN-DADLE-Alexa647 into HEK293 control and HEK-DOPr cells determined by flow cytometry. (F)
Uptake into HEK293 control and HEK-DOPr cells after 2 h. ***P < 0.001, t test with Holm-Sidak correction. (G) Effects of inhibitors of clathrin and dynamin and
inactive analogs on uptake into HEK-DOPr cells after 2 h. n = 3 independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared with untreated cells, one-
way ANOVA with Tukey’s post hoc test. (H) Uptake of DADLE-LipoMSN-DADLE-Alexa647 into HEK-HA-DOPr cells after 30 min. Arrows show colocalization of
DADLE-LipoMSN-DADLE-Alexa647 with DOPr in Rab5a-positive early endosomes. Representative images from four independent experiments. (I-K) Effects of
DADLE (100 nM), DADLE-LipoMSN (20 pM), and DADLE-LipoMSN-DADLE (20 pM) on forskolin (FSK; 10 pM)-stimulated cAMP formation (/), BARR1

recruitment (J), and activation of nuclear ERK (K). n = 5 independent experiments. All results are mean + SEM.

demonstrate the feasibility of using nanoparticles to target noci-
ceptors with consequent reductions in dose. Nanoparticles might
allow the simultaneous delivery to endosomes of agonists or antag-
onists of several endosomal GPCRs involved in pain. Since multiple
GPCRs control pain transmission (9), the ability to target multiple
receptors in pain-transmitting neurons for prolonged periods might
provide effective and long-lasting antinociception.

Nanoparticle-encapsulated GPCR ligands may have utility beyond
the treatment of pain. GPCRs control many pathophysiological
processes and are the targets of more than one-third of Food and
Drug Administration-approved drugs (1). Many GPCRs internalize
when activated and likely continue to signal from endosomes. The
use of stimulus-responsive nanoparticles for delivery of drugs to
endosomes of targeted cells might enhance efficacy with reduced
doses and fewer side effects.

Limitations. This study has several limitations. We cannot exclude a
possible role for plasma membrane signaling even in the sustained
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inhibitory actions of opioids. The relative contributions of plasma
membrane and endosomal signaling likely depend on the nature and
concentration of the ligand and the time at which nociception is
assessed. The differential effects of DOPr agonists that strongly
(SNC80 and DADLE) or weakly (ARM390) promote endocytosis
support a role for endosomal DOPr signaling for sustained anti-
nociception. ARM390 is a partial agonist for BARR recruitment,
which may explain its inability to cause long-lasting antinociception.
We were unable to determine whether DOPr endosomal signaling
involves G proteins and BARRs, which mediate endosomal signaling
of other GPCRs (4, 5, 10, 11, 49, 50). Although dynamin and clathrin
inhibitors blocked a subset of DOPr signals and inhibited sustained
antinociception, these inhibitors also have nonspecific actions (51).
Dominant negative dynamin and SARR knockdown replicated some
effects of endocytosis inhibitors but could affect other functions as
well. We cannot exclude the possibility that DOPr signals from in-
tracellular compartments other than endosomes, since MOPr can
signal from different compartments depending on the membrane
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Fig. 8. Effects of nanoparticle-encapsulated DOPr ligands on nociceptors. (A) Uptake of LipoMSN-Alexa647 (control) or DADLE-LipoMSN-Alexa647 into
primary cultures of DRG neurons from DOPr-eGFP mice. Neurons were incubated with nanoparticles for 60 min. Representative images from two experiments,
from four mice. (B and C) Rheobase of mouse DRG neurons at 0, 90, 120, or 180 min after exposure to DADLE, DADLE-LipoMSN-DADLE, DADLE-LipoMSN (all
100 nM), LipoMSN (control), or vehicle (control) and washing. Some neurons were exposed to PS2 and DADLE-LipoMSN-DADLE. Data points indicate the number
of studied neurons from n = 6 to 12 mice in B and C for each treatment. Compared with *DADLE, ADADLE-LipoMSN-DADLE, and #DADLE-LipoMSN; **p < 0.05,
**\\P < 0.01, ***P < 0.001, one-way (B) or two-way (C) ANOVA with Tukey’s post hoc test. (D) Colonic afferent activity at 0, 60, or 120 min after exposure of
tissues to DADLE-LipoMSN-DADLE (100 nM). Some preparations were exposed to PS2 and DADLE-LipoMSN-DADLE. n = 5 mice per group. *P < 0.05, **P <
0.01, two-way (*) ANOVA with Sidak’s post hoc test. (E) Ipsilateral paw withdrawal responses in mice. DADLE, DADLE-LipoMSN-DADLE (both 100 nM
DADLE), LipoMSN, or vehicle (Veh) was injected intrathecally at 48 h after intraplantar CFA. n = 5 mice per group. **P < 0.01, ****P < 0.0001 DADLE
compared with DADLE-LipoMSN-DADLE, two-way ANOVA with Tukey’s multiple comparison post hoc test. (F) Uptake of LipoMSN-Alexa647 into
endosomes of HEK293 cells expressing Rab5a-GFP after 120 min. (G) Time course of uptake of LipoMSN-Alexa647 into HEK293 cells. n = 3 independent
experiments. (H) Rheobase of mouse DRG neurons. Neurons were incubated with LipoMSN-SDM25N (100 nM) or LipoMSN (control) for 120 min, washed
(W), incubated with DADLE (10 nM, 15 min), and washed again. Rheobase was measured at 0 or 30 min after washing. Data points indicate the number of
studied neurons from four mice for each treatment. *P < 0.05, **P < 0.01, two-way ANOVA with Tukey’s post hoc test. All results are mean + SEM.

permeability of the agonist (40). Although our results show that PKC ~ component of the Mayo Clinic score for ulcerative colitis (SI' Appendix,

and ERK mediate the inhibitory actions of endosomal DOPr on
nociceptor excitability, the targets of these kinases and how they
inhibit nociception remain to be defined. Toxicologic analysis of
nanoparticle constituents, pharmacokinetic studies of nanoparticle
cargo, and pharmacodynamic studies in preclinical models of pain
will be necessary before this approach can be advanced to patients.

Materials and Methods

Animal Subjects. Institutional Ethics Committees approved the mouse studies.

Human Subjects. The Queen’s University Human Ethics Committee approved
the human studies. Patients undergoing colonoscopy for routine clinical care
gave informed consent for biopsy specimens of the mucosa to be obtained
from the descending colon during colonoscopy and for their data to be
recorded for research purposes. Biopsy specimens of mucosa were collected
from the descending colon of three patients with active cUC and three
healthy control patients. Disease severity was evaluated using the endoscopy
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Table S1).

Colon Supernatants. Mice were treated for three cycles with 2% DSS in
drinking water to induce chronic colitis or with water (control). Segments of
whole colon were incubated in medium (24 h) to obtain supernatants (16-18).
Biopsy specimens of colonic mucosa from cUC patients and controls (S/ Ap-
pendix, Table S1) were incubated in medium to obtain supernatants (11, 52).

Patch Clamp Recording. Patch clamp recordings were made from mouse DRG
neurons (11, 16, 18, 52). Neurons were preincubated for 60 min with
supernatants and then washed. Neurons were stimulated for 15 min with
DADLE (10 nM), SNC80 (10 nM), ARM390 (100 nM), DAMGO (10 nM), or
vehicle (control) and then washed. Neurons were also incubated overnight
(12 to 16 h) with DADLE (100 nM) or ARM390 (300 nM) and then washed. In
some experiments, neurons were preincubated for 30 min with SDM25N
(100 nM), CTOP (100 nM), Dy4 (30 pM), PS2 (15 uM), GF109203X (1 pM),
PD98059 (50 uM), or vehicle. Rheobase was measured after agonist treat-
ment and washing.
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Extracellular Recording. Extracellular recordings were made from the lumbar
splanchnic nerve innervating isolated mouse distal colon (11, 53, 54). SNC80,
ARM390, or DAMGO (all 100 nM) was superfused into the organ bath for
15 min. In some studies, colon was preincubated for 15 min with PS2 (50 pM)
before SNC80.

cDNAs, Cell Culture, and Transfection. Details are provided in S/ Appendix,
Materials and Methods.

Dissociation of DRG Neurons. DRG neurons were dispersed from DOPr-eGFP
mice (55).

BRET Assays. BRET was measured in HEK293 cells (10, 26).

FRET Assays. FRET was measured in HEK293 cells and DRG neurons from
DOPr-eGFP mice (10, 55). After FRET imaging, DOPr-eGFP was localized by
immunofluorescence. FRET was measured in neurons expressing DOPr-
eGFP.

DOPr-eGFP Trafficking. DRG neurons from DOPr-eGFP mice were exposed to
vehicle, DADLE (1 puM), DADLE-LipoMSN-Alexa647 (1 pM DADLE), or
LipoMSN-Alexa647 (10 pg/mL LipoMSN) (30 or 60 min, 37 °C). In some ex-
periments, neurons were preincubated with Dy4 (30 pM) or PS2 (15 pM) (30
min). DOPr-eGFP in neurons was localized by immunofluorescence.

Preparation and Physicochemical Characterization of Nanoparticles. Details are
provided in S/ Appendix, Materials and Methods.

Cellular Targeting of LipoMSNs. HEK293-HA-DOPr or untransfected cells
were incubated with DADLE-LipoMSN-Alexa647 or LipoMSN-Alexa647 (40
pg/mL). Uptake of nanoparticles was quantified by flow cytometry. In
some experiments, cells were preincubated with Dy4, PS2, or inactive an-
alogs (10 pg/mL, 30 min). For imaging studies, cells were transduced with
Rab5a-GFP. After 24 h, cells were preincubated with rat anti-HA. Cells
were washed and incubated with DADLE-LipoMSN-Alexa647 or LipoMSN-
Alexa647 (20 pM DADLE, 200 pg/mL LipoMSN). HA-DOPr was localized by
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and Methods.
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